math - Constructing Romberg integration table -


i trying write fortran program generate romberg integration table. there's algorithm in book numerical analysis r.l.burden , j.d.faires 9th ed. in chapter 4.5. far have written this

implicit none integer,parameter::n=4 real::a,b,f,r(n,n),h,sum1 integer::i,k,j,m,l open(1,file='out.txt') a=0. b=1. h=b-a r(1,1)=.5*h*(f(a)+f(b)) write(1,*)r(1,1) i=2,n     sum1=0.     k=1,2**(i-2)         sum1=sum1+f(a+(k-.5)*h)     enddo     r(2,1)=.5*(r(1,1)+h*sum1)     j=2,i         r(2,j)=r(2,j-1)+(r(2,j-1)-r(1,j-1))/(4**(j-1)-1)         write(1,*)((r(m,l),m=2,2),l=1,i)     enddo     h=h/2.     j=1,i         r(1,j)=r(2,j)     enddo enddo  end  real function f(x) implicit none real,intent(in)::x  f=1/(1+x**2)  end function 

this program gives following output:

  0.750000000       0.774999976      0.783333302       0.782794118      0.785392165       3.56011134e-22   0.782794118      0.785392165      0.785529435       0.784747124      0.785398126      0.785529435       7.30006976e+28   0.784747124      0.785398126      0.785398543       7.30006976e+28   0.784747124      0.785398126      0.785398543      0.785396457     

but supposed give this:

0.7500000000  0.7750000000 0.7833333333  0.7827941176 0.7853921567 0.7855294120  0.7847471236 0.7853981253 0.7853985227 0.7853964451  0.7852354030 0.7853981627 0.7853981647 0.7853981590 0.7853981659  

the above 1 done program written in maple. program in maple is

>   romberg := proc(f::algebraic, a, b, n,print_table)   local r,h,k,row,col;   r := array(0..n,0..n);    # compute column 0, trapezoid rule approximations of   #                   1,2,4,8,..2^n subintervals   h := evalf(b - a);   r[0,0] := evalf(h/2 * (f(a)+f(b)));   row 1 n do;     h := h/2;     r[row,0] := evalf(0.5*r[row-1,0] +                       sum(h*f(a+(2*k-1)*h),k=1..2^(row-1)));     # compute [row,1]:[row,row], via richardson extrapolation     col 1 row do;       r[row,col] := ((4^col)*r[row,col-1] - r[row-1,col-1]) /                         (4^col - 1);     end do;   end do;    # display results if requested   if (print_table)         row 0 n do;       col 0 row do;         printf("%12.10f ",r[row,col]);       end do;       printf("\n");     end do;   end if;    return(r[n,n]);   end proc: f:=x->1/(1+x^2); val:=romberg(f,0,1,4,true) 

so fortran program same result found maple program?

there number of differences between maple program , fortran source.

  • the result array of maple program dimensioned 0 n, while fortran program runs 1 n.

  • the fortran source never defines (calculates value for) r(3:,:) on account of fixed column indices.

given differences, shouldn't surprising results differ.

a naive, relatively direct, translation of maple source f2008 gives same result, after accounting usual vagaries of floating point arithmetic.

module romberg_module   implicit none    integer, parameter :: rk = kind(1.0d0)    abstract interface     function f_interface(x)       import :: rk       implicit none       real(rk), intent(in) :: x       real(rk) :: f_interface     end function f_interface   end interface contains   function romberg(f, a, b, n) result(r)     procedure(f_interface) :: f     real(rk), intent(in) ::     real(rk), intent(in) :: b     integer, intent(in) :: n     real(rk) :: r(0:n,0:n)    ! function result.      real(rk) :: h     integer :: row     integer :: col     integer :: k      h = b -     r(0,0) = h / 2 * (f(a) + f(b))     row = 1, n       h = h / 2       r(row, 0) = 0.5_rk * r(row-1, 0)  &           + sum(h * [(f(a + (2 * k - 1) * h), k = 1, 2**(row-1))])       col = 1, row         r(row, col) = (4**col * r(row, col-1) - r(row-1, col-1))  &             / (4**col - 1)       end     end   end function romberg    subroutine print_table(unit, r)     integer, intent(in) :: unit     real(rk), intent(in) :: r(0:,0:)     integer :: row     row = 0, ubound(r,1)       write (unit, "(*(f13.10,1x))") r(row, :row)     end   end subroutine print_table end module romberg_module  program print_romberg_table   use, intrinsic :: iso_fortran_env, only: output_unit   use romberg_module   implicit none   real(rk), allocatable :: r(:,:)   r = romberg(f, 0.0_rk, 1.0_rk, 4)   call print_table(output_unit, r) contains   function f(x)     real(rk), intent(in) :: x     real(rk) :: f     f = 1.0_rk / (1.0_rk + x**2)   end function f end program print_romberg_table 

Comments

Popular posts from this blog

c# - Binding a comma separated list to a List<int> in asp.net web api -

how to prompt save As Box in Excel Interlop c# MVC 4 -

xslt 1.0 - How to access or retrieve mets content of an item from another item? -